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We study the capillary instability of a liquid film (thickness h0) coating a horizontal
cylindrical tube (radius R0). We show experimentally that the instability only occurs
if h0/R0 > 0.3(R0/a)2, where a is the capillary length. If this criterion is not fulfilled,
the liquid film does not destabilize into an array of drops, owing to the gravitational
drainage.

1. Introduction
The capillary instability of cylindrical liquid interfaces is a classical topic of

interfacial science (Savart 1833; Plateau 1873; Rayleigh 1892; Chandrasekhar 1961;
Eggers 1997). Three examples are displayed in figure 1: a liquid jet (figure 1a), a liquid
film coating a fibre (figure 1b) and a liquid film deposited on the inner wall of a
tube (figure 1c). In each case, the image at the top presents the initial situation and
the image at the bottom the shape of the interface after a time τ characterizing the
instability.

Introducing the fluid properties (Newtonian liquid with density ρ, surface tension
σ , dynamic viscosity µ), the different scaling laws for τ are summarized in table 1,
depending on the Reynolds number (Johnson et al. 1991). Ri stands for the initial
radius of the liquid–air interface and h0 for the film thickness. In the case of a tube
of radius R0, we have Ri = R0 − h0.

Here, we study the effect of gravity on the capillary instability in tubes (figure 1c)
in the ‘viscous regime’ (Re � 1) and show how it can affect and even suppress the
instability.

2. Experimental setup
The experimental setup is presented in figure 2(a). A liquid slug of length L is first

introduced into a horizontal glass tube. We only use wetting liquids (silicone oils and
glycerol 98 %) whose characteristics are displayed in table 2. The last column of the
table gives the capillary length a ≡

√
σ/ρg. The tube radius R0 ranges from 150 µm

to 1.5 mm.
Once inserted, the liquid slug is pushed by air at a velocity U , using a syringe pump.

As it moves, it deposits a film of thickness h0 on the tube wall. The relative thickness
h0/R0 is fixed by the capillary number Ca ≡ µU/σ . The relation h0/R0(Ca) was
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Figure 1. Capillary instability of cylindrical interfaces: (a) liquid jet, (b) liquid film on a
fibre, (c) liquid film in a tube.
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Table 1. Scaling for the characteristic time τ of the capillary instability for the three different
cases displayed in figure 1. For the jet, Ri is the jet radius. For the fibre Ri = R0 + h0 where
R0 is the fibre radius and h0 the film thickness. For the tube Ri = R0 − h0 where R0 is the
inner tube radius and h0 the film thickness.
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Figure 2. (a) Experimental setup. (b) Evolution of the relative film thickness h0/R0 as a
function of the capillary number Ca (the continuous line is equation (2.1) and the symbols
correspond to our measurements).

ρ µ σ a

Liquid (kg m−3) (kg m−1 s−1) (kg s−2) (m)

SO V100 952 0.1 0.0225 1.6 10−3

SO V1000 965 1 0.0225 1.5 10−3

SO V12500 965 12.5 0.0225 1.5 10−3

Glycerol 98 % 1260 0.9 0.063 2.25 10−3

Table 2. Physical properties of the different Newtonian liquids (at 25 ◦C). SO is silicone oil.
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Figure 3. Chronophotography of the capillary instability visualized from the side
(R0 = 420 µm, h0/R0 = 0.35, SO V1000). The corresponding characteristic time is τ = 1 s.

experimentally determined by Taylor (1961), and found to obey the law (Aussillous
& Quéré 2000):

h0

R0

=
1.34 Ca2/3

1 + 3.35 Ca2/3
. (2.1)

This equation extends the small-capillary-number limit derived theoretically by
Bretherton (1961) and applies as long as inertia is negligible. We checked the accuracy
of this relation by measuring the slug length L as it moves, and deducing the thickness
from mass conservation. The film thickness is given in figure 2(b) as a function of the
capillary number and compared to equation (2.1) (continuous line). This comparison
shows that within 10 %, equation (2.1) does predict the measured thickness.

After the film deposition, the interface generally undergoes a varicose-like instability
(Rayleigh 1902), as shown in figure 3. This deformation is observed with a video
camera under a binocular lens. We measured the wavelength λ and the dynamics of
the deformation hmax(t), where hmax is the maximum film thickness (see figure 3). In
the example of figure 3, we find λ/Ri ≈ 8, and it takes about 3 s for the interface
to form plugs. The characteristic time τ of the instability can be evaluated using the
expression for the most unstable mode (see § 4) τ ≡ 12µR4

i /(σh3
0) ≈ 1 s.

3. Results
3.1. When the capillary instability does not occur

The first striking observation is that the capillary instability is not always observed:
this is shown in figure 4(a) where we present side and top views of the interface for
different thicknesses (at a time t > τ ) in the same tube (R0 = 420 µm) and with the
same liquid.

(i) For h0/R0 = 0.35 (figure 4a(i)), the instability does occur and both views
present a top/bottom symmetry: the phenomenon is axisymmetric.
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Figure 4. Experimental results concerning the transition. (a) Side and top views of the
interface obtained at t � τ in the same tube (R0 = 420 µm), with the same silicone oil (V1000)
but different thicknesses: (i) h0/R0 = 0.35 (t = 2.5 s, τ = 1 s), (ii) h0/R0 = 0.19 (t = 103 s,
τ = 14 s) (iii) h0/R0 = 0.034 (t = 10000 s, τ = 5075 s). (b) Transition between stable and
unstable interfaces in the plane [h0/R0; (R0/a)2]. For clarity, the errors bars have only been
shown on the square symbols, but they are similar in all experiments. The continuous line
represents the function h0/R0 = 0.3(R0/a)2.

(ii) For h0/R0 = 0.19 (figure 4a(ii)), the instability occurs but the side view reveals
that the phenomenon is no longer axisymmetric: the instability grows from the
bottom. We call this regime ‘transition’ from now on.

(iii) For h0/R0 = 0.03 (figure 4a(iii)), the instability is never observed. In this case,
our video camera enables us to record images only up to t = 10000 s, but the situation
remains much longer.

The ‘phase diagram’ for the state of the interface is presented in figure 4(b), where we
summarize the results obtained in different tubes with different liquids. In this figure,
the relative thickness h0/R0 is plotted as a function of the square of the reduced
radius (R0/a)2. We observe that the instability only occurs if h0/R0 > 0.3(R0/a)2

(continuous line).

3.2. When the capillary instability occurs

The classical theory of the capillary instability of a cylindrical interface predicts an
exponential growth of a varicose deformation of wavelength λ if λ> 2πRi (Plateau
1873; Rayleigh 1902; Chandrasekhar 1961). The most unstable wavelength is λth ≡
2π

√
2Ri with a corresponding growth time τth = 12µR4

i /(σh3
0). The latter expression

holds provided the Reynolds number in the film remains smaller than unity, Re ≡
ρuh0/µ � 1, where u is the typical velocity of the flow.

We present in figure 5(a) the evolution of the observed wavelength λ as a function
of the interface radius Ri , for different liquids. Ten wavelengths were measured for
each experiment to get an accurate mean value. The expected theoretical value is
shown by the thick solid line. We observe that the wavelength converges toward the
theoretical value for ‘small’ Ri . When the interface radius becomes of the order of
1mm, the wavelength increases more than expected by the theory. This tendency is
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Figure 5. (a) Evolution of the wavelength λ as a function of the interface radius Ri for
different liquids: �, V100; �, V1000; �, V12500; �, glycerol; ×, experiments by Goldsmith &

Mason (1963). The thick continuous line is the classical result λ = 2π
√

2Ri , the thin continuous

line and the dashed line respectively represent the curves λ = 2π
√

2Ri/
√

1 − 2.5Bo2 for the
silicone oils and the glycerol. (b) Comparison between the measured characteristic time τ
and the theoretical expression τth ≡ 12µR4

i /(σh3
0) for different liquids: � V100, � V1000,

× Experiments by Goldsmith & Mason (1963). The thick continuous line stands for the
theoretical value and the thin continuous line for the best fit.

more pronounced for silicone oils than for glycerol. Experiments by Goldsmith &
Mason (1963) are reported in figure 5(a). In their system the influence of gravity
has been minimized by matching the densities of the core and annulus fluids. The
wavelengths they measure are always very close to the expected theoretical values. This
suggests that the deviation observed in our measurements could be due to gravity. The

thin continuous and dashed lines represent the function λ = 2π
√

2Ri/
√

1 − 2.5Bo2,
with Bo ≡ Ri/a the Bond number, for silicone oils and glycerine respectively. This
fitting function (which will be justified in § 4.2) suggests that the wavelength diverges
when the interface radius tends to the capillary length.

The measured growth rate 1/τ is the slope of the curve ln[hmax(t)] extracted from
the linear part of the growth. This time is smaller than the time to completely form the
liquid plug. τ is plotted in figure 5(b) as a function of τth, the value expected for the
most unstable mode. In these experiments the tube radius was constant (R = 0.4mm)
and both the viscosity and the thickness were varied. A linearity between τ and τth

is found but the measured values are systematically above the theoretical ones (thick
line). A best fit of the data (thin line) suggests that τ ≈ 1.34τth. The experiments by
Goldsmith & Mason (1963) also give the same result, with a larger dispersion.

3.3. Evidence for drainage

In order to show the gravitational drainage, we visualize the interface using a video
camera aligned along the axis of symmetry z of the tube. The resulting pictures are
displayed in figure 6 for an unstable interface (a) and for an interface in the transition
region (b). In both cases, drainage can be observed, but it is much more pronounced
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Figure 6. Evidence for drainage: (a) unstable interface observed at three different times in
a tube of radius 0.69 mm with h0/R0 ∼ 0.34; (b) unstable interface in the transition regime,
observed at three different times in a tube of radius 0.6 mm with h0/R0 ∼ 0.07.
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Figure 7. Notation used for the theoretical description; (a) side view; (b) cross-section.

in the transition region. Figure 6 also shows that despite the drainage, the interface
always remains circular.

4. Model
The theoretical description of the interface evolution is discussed using the

conventions shown in figure 7(a): the liquid/air interface has a radius R(z, t) and a
centre C which moves with time vertically from its initial location C0 (centre of the
tube) to R0 − R. We use cylindrical coordinates centred at C and denote ε(R0 − R) as
the excentricity of the interface with respect to the tube.

4.1. Qualitative arguments

A criterion for the transition can be obtained by comparing the characteristic time of
the instability τ ∼ µR4

i /(σh3
0) to the characteristic time of drainage τd ∼ µRi/(ρgh2

0).
The latter is simply the time required for a vertical viscous film of thickness h0 to fall
under its weight a distance Ri . The ratio τ/τd is written

τ

τd

∼ R3
i

a2h0

(4.1)
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where a ≡
√

σ/(ρg) is the capillary length. The instability is expected to occur in the
limit τ/τd � 1 and to be affected by gravity when τ/τd � 1: then a liquid particle falls
faster under gravity than it is raised by capillarity, so that one might expect the
instability to be suppressed. For Ri ∼ R0, this criterion is: h0/R0 < (R0/a)2, in good
agreement with the results shown in figure 4(b).

A physical argument can also be proposed to understand the increase of the
wavelength due to gravity. Using Laplace and hydrostatic equations to evaluate the
pressure difference between A′ and B (isolevel points in figure 7a) leads to

PB − PA′ = 2δR
σ

R2
i

[
1 −

(
Ri

a

)2

− (kRi)
2

]
. (4.2)

Since the instability only develops if PB > PA′ , we deduce that the wavelength

must satisfy the relation: λ> 2πRi/
√

1 − Bo2, which diverges when the Bond number
approaches unity.

4.2. Theoretical approach to the transition

The description of the interface motion is classically based on mass conservation,
Stokes equation and boundary conditions at the interface, using lubrication
approximations (∂/∂r � ∂/r∂θ , ∂/∂r � ∂/∂z) and small slope limit (∂h/∂z � 1
and ∂h/r∂θ � 1). Using the conventions of figure 7, mass conservation is written

∂(Rh)

∂t
= −∂(hūθ )

∂θ
− ∂(Rhūz)

∂z
(4.3)

where ūθ and ūz stand for the mean velocities in the film along the eθ and ez directions.
Stokes’ equation expresses the balance between pressure gradient, gravity and viscous
force acting on a liquid element.

−∇p + ρg + µ�u = 0 (4.4)

(i) Along er , this force balance reduces to ∂p/∂r = −ρg cos θ , which yields

p = p0 − σC − ρg cos θ(r − R) (4.5)

where p0 is the atmospheric pressure and C is the total curvature.
(ii) Along eθ , and in the thin-film limit, equation (4.4) leads to µd2uθ/dr2 =

∂p/R∂θ − ρg sin θ . This equation can be integrated twice (using the no-slip condition
at the wall and continuity of stress at the interface), which gives the mean velocity
along eθ:

ūθ =
h2

3µ

(
ρg sin θ +

σ

R

∂C
∂θ

)
. (4.6)

(iii) Along ez, Stokes’ equation can be treated in the same way as along the
eθ -direction which provides the mean velocity ūz:

ūz = − h2

3µ

(
ρg cos θ

∂R

∂z
− σ

∂C
∂z

)
. (4.7)

The next step is to evaluate the total curvature of the interface C(z, θ, t). As
sketched in figure 7, and confirmed in figure 6, we assume that the interface always
remains circular. This assumption holds provided surface tension dominates viscous
and gravity effects, that is, at small capillary and Bond numbers (Ca ≡ µūθ/σ � 1;
Bo ≡ Ri/a < 1), which is the case in this study. This condition leads to the expression
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for the total curvature, which in the small-slope limits

C ≈ 1

R
+

∂2h

∂z2
. (4.8)

The circular condition also provides a geometrical relation between h and R which
reduces in the thin-film limit (h/R � 1) to

h(z, θ, t) = [R0 − R(z, t)][1 − ε(t) cos θ ]. (4.9)

The last step is to impose a varicose-like perturbation to the interface h(z, θ, t) =
[R0 − Ri(1 + δei(kz−ωt))][1 − ε(t) cos θ], where Ri is the initial radius of the interface
and δ is a small parameter. At the leading order in δ and ε, the different terms of
equation (4.3) take the form

∂(Rh)

∂t
≈ Rih0

[
− cos θ

∂ε

∂t
+ iω

Ri

h0

δei(kz−ωt)

]
, (4.10)

∂(hūθ )

∂θ
≈ ρgh3

0

3µ
cos θ

[
1 − 3

Ri

h0

δei(kz−ωt)

]
, (4.11)

∂(Rhūz)

∂z
≈ R2

i h
3
0k

2

3µ
δei(kz−ωt)

(
σ

R2
i

+ ρg cos θ − σk2

)
. (4.12)

The mass conservation (4.3) leads to an equation for ε(t):

dε

dt
=

ρgh2
0

3µRi

(4.13)

and to the dispersion relation

−iω =
σh3

0

3µR4
i

[
(kRi)

2(1 + Bo2 cos θ − (kRi)
2) − 3Bo2 Ri

h0

cos θ

]
. (4.14)

Equation (4.13) describes the dynamics of the drainage and provides an estimate of
its characteristic time τd ≈ 3µRi/(ρgh2

0). On the other hand, the dispersion relation
(4.14) can be interpreted as follows:

(i) In the zero-gravity limit (Bo � 1, Bo2Ri/h0 � 1), equation (4.14) reduces to
the classical expression (Goren 1961)

−iω =
σh3

0

3µR4
i

(kRi)
2[1 − (kRi)

2]. (4.15)

This dispersion relation implies that the initial perturbation will grow exponentially
in time if kRi < 1. The fastest mode is kRi = 1/

√
2 and the corresponding growth

rate (−iω)max = σh3
0/(12µR4

i ).
(ii) For finite gravity (Bo � 1, Bo2Ri/h0 = O(1)), the first effect predicted by equa-

tion (4.14) is a reduction of the growth rate in the upper part of the tube (cos θ > 0)
and its enhancement in the lower part (cos θ < 0). In this limit, the wavelength of
the fastest mode is not affected by gravity. This effect is indeed observed experimentally
in the transition region (see figure 4).

(iii) When the Bond number approaches unity, the wavelength of the fastest mode is

affected. If we focus on the lower part of the tube we find λmax = 2π
√

2Ri/
√

1 − Bo2.
The wavelength thus increases owing to the effect of gravity. The divergence in

1/
√

1 − Bo2 is shown in figure 5. Experimentally, the divergence is slightly faster since

we find that 1/
√

1 − 2.5Bo2 agrees better with our measurements.
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Figure 8. Transition between stable and unstable interfaces in the plane [h0/Ri; Bo2/

(1 − Bo2)2]: �, experimental data. The continuous line is the best linear fit: h0/Ri = 0.26Bo2/

(1 − Bo2)2.

(iv) Finally, with the constraint of a circular interface, the instability develops if the
interface is unstable for all θ . The capillary instability is thus suppressed by gravity
as soon as the upper part becomes stable. According to equation (4.14) this happens
for h0/Ri � 12Bo2/(1 − Bo2)2. This criterion is compared to our experimental results
in figure 8. The linearity between h0/Ri and Bo2/(1 − Bo2)2 is almost satisfied but the
prefactor is only 0.26.

Although the model explains several experimental observations (evolution of the
wavelength, preferential growth at the bottom, threshold for the instability), it fails in
predicting the correct numerical factors.

5. Conclusion
We have studied the effect of gravity on the capillary instability in tubes at low

Reynolds numbers. We have shown that the classical results are recovered pro-
vided that gravity is negligible (Bo � 1, Bo2Ri/h0 � 1). When gravity is increased
(Bo � 1, Bo2Ri/h0 = O(1)) the wavelength is not affected but the instability develops
faster in the lower part of the tube. Finally, when the Bond number approaches
one, the wavelength increases. But a main result of the study is that the capillary
instability is screened by gravity effects: thin films drain towards the bottom of the
tube faster than they develop the instability. This result can be compared to what is
observed for films flowing on vertical curved objects – such as tubes or fibres. Then,
the instability can generate a ‘saturation’ of the instability, that is, prevent the drops
from developing, provided that the film thickness is smaller than the critical thickness
R3/a2 (Quéré 1990: Chang 1999). The origin of this effect is quite different, but the
physical ingredients being the same, it is logical to find a similar scaling for the critical
thickness.

We are grateful to Professor Marc Fermigier from ESPCI for his contribution in
figure 1.
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